Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Жуковский Н.Е. Теоретическая механика Изд2
 
djvu / html
 

518 ДИНАМИКА СИСТЕМЫ [Ч. V
Вследствие этого все силы X, Хг, Х , , . ., У, Klt Ха, . . ., Z, . . ., n j
являются частными производными от функции ./, так что
у дЦ • =
дх
Функция ./ называется силовой функцией данной системы сил. При помощи силовой функции уравнение (44) можно представить так:
dZi = dUt (45)
т. е. дифференциал живой силы системы равен дифференциалу силовой функции. Интегрируя уравнение (45), находим:
(46)
где h - некоторая произвольная постоянная величина, определяемая по начальным данным. Если положим, что в начале движения скорости точек системы суть г»0, vQi г, ..., а силовая функция U = U0, то
(46 )
и интеграл живой силы представится так:
ХЛ mv vi tnvn
S-2---SV - o. (47)
т. е. приращение живой силы системы равно приращению силовой функции. Часто интеграл живой силы выражают в форме (46) и формулируют его в виде принципа сохранения энергии. Для этого вводят некоторую функцию L = - U. Уравнение (46) принимает при этом
вид:
, ,. .
А. (48)
L называется потенциальной энергией системы, а живая сила системы называется кинетической энергией- Пользуясь этими терминами, теорему живых сил в виде (48) мы можем формулировать так: сумма кинетической и потенциальной энергий системы есть величина постоянная. Как добавление к теореме живых сил приведем два примера, в которых укажем, как составляется силовая функция U.
1) Система находится под действием сил тяжести. Если ось Oz направлена вертикально вверх, то компоненты сил тяжести по осям будут
= 0, Z - mlS; ...
rmted with FmePrmt- purchase at www fmeprmt ct

 

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 511 512 513 514 515 516 517 518 519 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810


Гидродинамика и газодинамика. Промышленное оборудование - насосы, компрессоры. Справочники, статьи