Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Жуковский Н.Е. Теоретическая механика Изд2
 
djvu / html
 

200 ГЛ. IV. ЦЕНТР ТЯЖЕСТИ [Ч. П
замкнутой поверхностью объем, внутри которого лежала бы точка С. Назовем этот объем через AV , а через ДЖ назовем массу материи,
ДЛ заключающейся во взятом ооъеме, тогда отношение -г-тг и принимается
за среднюю плотность для рассматриваемого объема ДУ. Переходя к пределу, т. е. полагая, что объем AV приближается к нулю, а точка С постоянно остается внутри ограничивающей его поверхности, получим некоторую определенную величину
dM
которую мы и называем плотностью с тела в данной точке С. Отсюда следует, что масса малой части тела у точки С есть
Перейдем теперь к вопросу об определении координат центра тяжести сплошного тела. Для этого разбиваем тело на весьма малые элементы в виде весьма небольших прямоугольных параллелепипедов со сторонами, параллельными плоскостям координат. Назовем объем элемента через dV\ тогда масса элемента объема выразится так:
т = t dV,
где f--плотность тела в той точке, где находится элемент. Вес элемента выразится через
р - mg =a g d V • -у = f g dx dy dz,
где dx, dyt dz-ребра элемента. Подставив это выражение р в формулы (26) и заменив знак суммы знаком тройного интеграла, распространенного на все тело, по сокращении на постоянную величину g получим:
f f f z-\ dx dy dz
2 в=-
Если тело однородно, то для всех бесконечно малых элементов dV плотность ч будет одинакова; в таком случае f можно вынести за знак интеграла как в числителе, так и в знаменателе и сократить; тогда, заметив, что
получим.
je = .J I I xdxdydz,
(27) dz.
V J ] \

 

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 201 202 203 204 205 206 207 208 209 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810


Гидродинамика и газодинамика. Промышленное оборудование - насосы, компрессоры. Справочники, статьи