Избранное
ЭБ Нефть
и Газ
Главная
Оглавление
Поиск +
Еще книги ...
Энциклопедия
Помощь
Для просмотра
необходимо:


Книга: Главная » Якоби К.N. Лекции по динамике
 
djvu / html
 

ОГЛАВЛЕНИЕ
Стр.
Карл Густав Якоб Якобн.......................... 3
Нервая лекция. Введение.......................... 5
Вторая лекция. Дифференциальные уравнения движения. Их символическая
форма. Силовая функция ........................ 9
Третья лекция. Принцип сохранения движения центра тяжести....... 16
Четвертая лекция. Принцип сохранения живой силы............ 19
Пятая лекция. Принцип сохранения площадей............... 29
Шестая лекция. Принцип наименьшего действия.............. 39
Седьмая лекция- Дальнейшее изучение принципа наименьшего действия.
Множители Лагранжа.......................... 4<>
Восьмая лекции. Интеграл Гамильтона и вторая Лагранжева форма уравнений
динамики................................. 51
Девятая лекция. Гамнльтонова форма уравнений движения......... 59
Десятая лекция. Принцип последнего множителя. Распространение Эйлеров-окнх множителей на случай трех переменных. Составление последнего
множителя и этом случае........................ 03
Одиннадцатая лекции. Обзор трех свойств определителей, которыми пользуются в теории последнего множителя................. 75
Двенадцатая лекция. Множитель системы дифференциальных уравнений
с произвольно большим числом переменных............... 80
Тринадцатая лекция. Функциональные определители, их применение к составлению уравнения в частных производных для множителя....... S9
Четырнадцатая лекция. Вторая форма уравнения, определяющего множитель. Множители ступенчатой приведенной системы дифференциальных уравнений. Множитель при использовании частных интегралов......... 94
Пятнадцатая лекция. Множитель системы дифференциальных уравнений с производными высшего порядка. Применение к свободной системе
материальных точек.......................... 104
Шестнадцатая лекция. Примеры разыскания множителя, притяжение точки к неподвижному центру в среде, оказывающей сопротивление, и в пустом
пространстве............................... 110
Семнадцатая лекция. Множитель для уравнений движения несвободной системы в первой Лаграшкевой форме.................. 11<>
Носемнадцатая лекция. Множитель для уравнений несвободной системы
в Гамцльтоновой форме......................... 12i
Девятнадцатая лекция. Гамильтононы уравнения л частных производных
и их распространив на изопериметрические задачи..... ...... .-<>
Двадцатая лекция. Доказательство того, что интегральные уравнения, выведенные из (годного решения Гамнльтонова уравнения в частных производных, действительно удовлетворяют системе обыкновенных дифференциальных уравнений, уравнение Гамильтона для случаи свободного
движения................................ 13/
Двадцать первая лекция. Исследование случая, когда I не входит яино . • . 143. Двадцать вторая лекция. Лагранжев метод интегрирования уравнений в чаот- ых производных первого порядка с двумя независимыми переменными,
27t

 

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 271


Гидродинамика и газодинамика. Промышленное оборудование - насосы, компрессоры. Справочники, статьи